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A Maximum Entropy Moment Closure Approach to Describing Spray Flows

M. Archambault, R. W. MacCormack
Department of Aeronautics and Astronautics
C.F. Edwards’

Department of Mechanical Engineering
Stanford University
Stanford, CA 94305

This paper describes a method to obtain a complete description of a spray flow by computing the evolution of its
probability density function simultaneously with the gas flow in which it is embedded. Transport equations
describing the evolution of certain moments of the probability density function are closed using a Maximum
Entropy Formalism. Work is currently underway to test whether this method will yield significant advantages over

conventional approaches to predicting spray flows.

INTRODUCTION

Understanding and modeling multiphase flows
have become of primary interest in a wide variety of
applications. Of particular importance are Spray flows
such as those associated with liquid fuel injectors,
industrial coating processes, and agricultural sprays. A
spray flow can be defined as that regime downstream
of an injector where a liquid column or sheet has
broken up and atomized, but the resultant drops
continue to have some mean velocity relative to the gas
phase. Both the liquid phase and the gas phase
continue to dynamically interact, exchanging not only
momentum, but possibly mass and energy as well.
This evolution can have a significant impact, for
example, on the combustion processes inside 2 liquid
rocket engine or on the coating produced by a spray
application system. For this reason, it is necessary to
have a full understanding of the physics of spray flows
and to be able to accurately predict not only the
distribution of the drops and their behavior, but also the
dynamics of the gas phase, that is, the characteristics of
the combined two-phase flow.

One common approach used in studying spray
flows has been to use a Lagrangian-Eulerian, or particle
tracking, method [1, 2]. The gas phase is predicted by
solving the time-dependent, Reynolds-Averaged
Navier-Stokes (RANS) equations with a suitable
turbulence model and appropriate exchange terms. The
drop trajectories are computed by integrating a
Lagrangian equation of motion. While this approach
has provided useful information in many applications,
it also has some significant drawbacks.

For instance, as a drop’s trajectory is not likely
to coincide with the vertices of the numerical grid used
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to solve the gas equations, the issue of how to compute
the exchange rates between phases must be resolved.
As a drop travels, it deposits mass, momentum, and
energy in a thin wake behind it. These quantities then
diffuse or advect into the rest of the flow at a rate
which depends on the gas properties and flow field.
However, unless specifically accounted for by a
subgrid model {31, the exchanged mass, momentum,
and energy are immediately spread across the grid cell
into which they were deposited. As they diffuse into
neighboring cells, they are again instantly averaged
over the cell. This has the effect of artificially
increasing the transport rates of the exchanged
quantities.

This error is compounded when we consider that
a typical spray flow may have 10° or more drops per
cubic centimeter. Current computer resources are
inadequate to handle such a large number of particles.
To compensate, computational drops are tracked, each
computational drop often representihg as many as 10°
real drops. Thus, as one of these computational drops
deposits mass, momentum, and energy into a grid cell,

it must do so for 10* drops. Obviously this is not

physical, as the actual drops would have different
trajectories and their depositions would be more spread
out through the gas phase.

Particle tracking also suffers from the fact that
the tracking calculations are, by nature, simulations
whereas the RANS equations constitute a model for the
mean flow field. Some researchers [4, 5] have
attempted to resolve this by using Large Eddy
Simulation (LES) techniques. By simulating the gas
flow (though subgrid processes must still be modeled),
the approaches to predicting the two phases seem to be



more compatible with each other than simply using the
RANS equations, but the LES method still suffers from
the same droplet tracking issues discussed above.
Further, given that we are generally interested in
average flow quantities rather than instantaneous
values, all the data arising from any simulation must be
post-processed. This may not pose a problem if we are
only interested in overall statistics. For example, if we
want to know the mean number density of drops in a
particular cell, we can perform a simple time average.
However, what if we are interested in the mean number
density of drops in 2 particular size class? The
averaging procedure might be similar, but the required
computational time is significantly increased because a
sufficient number of drops in the specific size class
must pass through the cell to provide a data set large
enough for a meaningful average. Now what if we
want the mean number density of drops in a particular
size and velocity class? The computational time will
again increase as We wait for enough data on drops in
these classes to be generated. As the quantity of
interest becomes moOre specific, the necessary
computation time becomes more prohibitive.

An alternative approach which does not involve
simulation is to compute the evolution of the average
quantities of the spray flow directly. Not only will this
remove the need to post-average, but it will also resolve
many of the other problems associated with particle
tracking. The purpose of this work is to obtain a
complete description of a spray flow by computing the
evolution of its probability density function (pdf) along
with the gas flow in which it is embedded.

GOVERNING EQUATIONS

Following Williams [6] and O’Rourke [7], let
F(z, ¥, ¢ 1)dx dv d¢ denote the probability of finding
a drop in dx about X with velocity in v about v and
diameter in d¢ about ¢ at time . Neglecting source
terms and vaporization, the spray equation, which
describes the evolution of the drop pdf, can be written

%Wx-(m)wv-(m):o M
The two gradient symbols denote a spatial and velocity
gradient, respectively, and the quantity a is the
expected time rate of change of velocity with the
expectation being Over the gas phase characteristics.
Note that v is a coordinate of the space the pdf spans
rather than the expected rate of change of position. The
incompressible, ensemble-averaged ~ Navier-Stokes
equations are solved for the gas flow properties. The
two sets of equations are coupled by a point force term
in the gas equations and the droplet acceleration a in
the spray equation. The Reynolds-stress terms are
closed used using a standard k — € model that has been

slightly modified to account for the generation and/or
dissipation of turbulence due to the drops. The
modification also adds another level of coupling
between the two phases. '

A straightforward solution of the spray equation
is not possible given the number of dimensions that F
spans. A finite volume mesh over the seven
dimensions we are currently considering would require
at least 50 grid cells—fifty in each coordinate
direction. However, every pdf is expressible as an
infinite set of moments. If we assume that a select
number of low-order moments carry a predominant
amount of the information about the spray, then an
approximate solution of the spray equation may be
found using moment methods.

Consider the following decomposition of F

F& v, ¢:1)= A ACREE)) @)

where A, (X; t) is the one-particle probability density
function in physical space, f (¢, ¥ %, 1)dodv is the

probability that a drop found in d% at time ¢ has size
and velocity coordinates in d¢ about ¢ and dv about

v, and the subscript ¢ is used to denote concentration-
based statistics. The quantity A (%;t) may also be

interpreted as the expected number density of drops at
(, 1) [8]. Using (2), the spray equation may be split
into two separate equations
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The angled brackets denote the ensemble average over
drop diameter and velocity space. Equation (3)
describes the evolution of the expected number density
of the spray. The terms on the left hand side of
equation (4) are similar to those in the spray equation,
however two new terms have been introduced on the
right-hand side. The first represents a renormalization
of the size/velocity pdf due to the gain or loss of drops
in a grid cell in the presence of a gradient in the mean
drop velocity. The second term is a redistribution of
probability due to a number density gradient.

MOMENT EQUATIONS

The decomposition expressed in equation (2) is a
necessary and important step in our development
because F is not a normalized pdf. The probability
represented by F is directly dependent upon the amount
of spray present across the ensemble at a given location



in physical space. By decomposing F, we are able to
remove this dependency and obtain the normalized pdf,
f., which is only defined across realizations of the
ensemble in which a droplet is located at the point of
interest. Unlike F, we are able to compute moments of
f., and by making use of equation (4), we can derive
transport equations for those moments. For example,
by multiplying (4) by ¢ and integrating over all
diameter and velocity space, we obtain an equation for
the evolution of the expected drop diameter o)
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Other moments that might be selected for a one-
dimensional computation are the mean drop velocity,

. 2
(v,) , mean-squared velocity, (vx>, and the
diameter/velocity cross moment, {¢v.). The transport
equations for the these moments are, respectively,
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where equation (7) has been written in terms of a

2 2 2
GV=<Vx>‘(Vx> , rather than a

moment about the origin. When the method is
extended to two-dimensional flow, additional moments
will be required, such as {v,), (v?),{ov,), and
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central moment,

along with their corresponding  transport

equations.

MAXIMUM ENTROPY CLOSURE

This moment method suffers, however, from the
same fundamental closure problem encountered in
turbulence modeling. As each successive moment
transport equation is derived, at least one new, higher-
order moment is introduced that must be determined.

These unclosed moments can be evaluated by making
use of the Maximum Entropy principle. In his study of
communications theory, Shannon (9] developed the
concept of information entropy as 2 measure of
probabilistic uncertainty. Later, Jaynes [10] showed
that an infinite number of pdf’s are consistent with a set
of known constraints, but the one that should be chosen
is the one with maximum entropy. If a pdf with less
entropy (i.e., less uncertainty) were used, it would
imply the existence of some additional knowledge.
However, since all the available knowledge was
applied in the form of constraints, no additional
knowledge would exist, thus it would be inappropriate
to choose any pdf other than the one with maximum
entropy. This pdf is the most unbiased distribution
possible within the given constraints. Figure 1 shows
some examples of common distributions predicted by
the Maximum Entropy Formalism (MEE). The
uniform distribution shows that in the absence of any
constraints other than the endpoints of its domain,
every value in the domain is equally probable since
there is no information to the contrary. The other three
distributions show the results of different moment
constraints. It is interesting to note that the parameters
used to characterize these distributions, for example,
the mean and variance of a Gaussian distribution, are
the same quantities used as constraints in the Maximum
Entropy Formalism. This lends a high degree of
confidence to the validity of the Maximum Entropy
approach.

Though various types of constraints have been
used in different applications of the MEF, we will
require that the low-order moments that we selected
earlier have a specified value. The maximization is
carried out by way of the method of Lagrange
multipliers. This leads to a pdf of the form

M
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where the A’'s are the Lagrange multipliers, A, is the
quantity to be averaged, and M is the number of
moment constraints,  The coefficients must be
determined from a norminear system of coupled,
differential equations which, in general, must be solved
numerically. Figure 2 shows a typical distribution for a
drop’s diameter and onme component of velocity
constrained by the mean velocity and diameter, the
mean-squared velocity and diameter, the mean-cubed
diameter, and the diameter/velocity cross moment.
Notice how the drop diameter and velocity are
correlated due to the influence of the constrained cross
moment and that there is some skewness in the
diameter direction imparted by the mean-cubed
diameter constraint.



Sellens, Tankin, and others [11, 12} have made
use of the Maximum Entropy Formalism in their work
on predicting droplet distributions resulting from the
breakup of a liquid sheet or jet. In this work, the
breakup process is considered independently from gas-
phase constraints, and it was not their intention to solve
for the evolution of the droplet distribution throughout
space and time, but rather to obtain a distribution for all
the drops in the spray. In contrast, our work is focused
on describing the evolution of a droplet pdf at every
point in the flow domain and how that evolution is
influenced by and interacts with the gas phase. In our
approach, we model the evolution of the complete,
coupled spray flow using moment equations. The MEF
is introduced as a method to close those equations. For
this reason, we refer to this approach as MEMC, the
Maximum Entropy Moment Closure approach to
modeling spray flows.

CURRENT STATUS

At the time of this writing, the theoretical
framework has been established, and though there still
exist some numerical issues which need to be
addressed, we have proceeded to compute some simple
test cases. The moment transport equations have been
solved without the gas phase (though an artificial drag
was imposed). The results agree with our expectations
‘that a distribution would propagate from the injector
through the flow domain. Secondly, a gas-phase flow
solver has been programmed and validated using a
number of standard test cases. The two solution
algorithms have been incorporated into a new code and
we are presently working on smoothly integrating the
computation of the two sets of equations.

Calculations are currently being carried out on a
single-processor work station, however the simple tests
performed thus far have shown that there could be
significant advantages to transporting the code to a
mutli-processor platform.  Certain aspects of the
solution procedure seem particularly well-suited to
parallel computation. Once we have completed the
one-dimensional tests, we will begin exploring this
option in more detail.
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Fig. 1: Distributions produced by the Maximum Entropy Formalism using various constraints. (a) No constraints
on a finite domain. (b) Arithmetic and geometric means constrained on a semi-infinite domain. (c) Mean
constrained on a semi-infinite domain. (d) Mean and variance constrained on an infinite domain.
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Fig. 2: Sample spray probability density function over diameter and x-velocity space.



